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We present herein a QSAR tool enabling an entirely in silico prediction of human and rat steady-state
volume of distribution (Vss), to be made prior to chemical synthesis, preceding detailed allometric or
mechanistic assessment ofVss. Three different statistical methodologies, Bayesian neural networks (BNN),
classification and regression trees (CART), and partial least squares (PLS) were employed to model human
(N ) 199) and rat (N ) 2086) data sets. The results in prediction of an independent test set show the human
model has anr2 of 0.60 and an rms error in prediction of 0.48. The corresponding rat model has anr2 of
0.53 and an rms error in prediction of 0.37, indicating both models could be very useful in the early stages
of the drug discovery process. This is the first reported entirely in silico approach to the prediction of rat
and human steady-state volume of distribution.

Introduction

The huge cost of pharmaceutical drug development (the
current cost of discovering a new therapy is thought to approach
U.S. $1.3-1.6 billion1) and the high attrition of compounds
entering clinical development are rightly focusing attention upon
every aspect of the efficiency of our industry. While reasons
for attrition are varied, including portfolio decisions and lack
of clinical efficacy of the biological mechanism, many reasons
for compound failure are entirely controlled by the chemical
structure. Therefore, there is still much that can be done in the
discovery phase, to improve the chances of success of a
candidate drug later in development, by the judicious choice of
a chemical target. Hence, the current focus is upon the use of
predictive ADMETa models allowing the biological properties
of virtual structures to be predicted and a more informed choice
of target to be selected for synthesis.

The prediction of the steady-state volume of distribution (Vss)
is a key pharmacokinetic parameter, which together with
clearance determines the half-life, and thus impacts on the
dosing regimen of a compound. The dosing regimen is designed
to maintain a free plasma concentration, greater than that
required to give the pharmacodynamic effect throughout the
dosing interval, while lessening the maximal concentration
(Cmax) and potential for related side effects. These pharmaco-
dynamic parameters, being very difficult to predict and unique
to the pharmacological target, have meant that efforts have been
concentrated on predicting half-life.2 While allometric scaling3

and correlative methods have been used, in vivo and in vitro
data in animals are required and improved correlations tend to
be achieved by prediction of the two major determinants,
clearance andVss.4

Vss represents the volume in which a drug would appear to
be distributed during steady state if the drug existed throughout
that volume at the same concentration as that in the measured
fluid (blood or plasma). It is a function of binding to plasma
and tissue components and as such is commonly expressed via
the Gillette equation:5

whereVp is the plasma volume,Vt is the tissue volume, andfu
is the fraction unbound in plasma (p) and tissue (t). While it is
possible to measurefup in man, it is not practical to measurefut,
as fut represents a weighted mean for all tissues. Whilefut for
individual tissues can be measured using dialysis, it becomes
nonpractical for multiple tissues for rapid progression of
compounds. Furthermore, excellent correlations between lipo-
philicity and unbound fraction in rat tissue, as measured by
equilibrium dialysis, have been demonstrated.6 The binding and
partition phenomena, which drive the free fraction in plasma
and tissue, are often explained in terms of physicochemical
descriptors and thus indicate it should be possible to predict
the Vss of a compound purely from its structure.

A number of different strategies have been applied to the
prediction of humanVss including allometry, PBPK modeling,7

and multivariate analysis of animalVssdata.8 These approaches,
all requiring experimental data sets, have proven successful at
the latter stages of lead optimization and in preclinical develop-
ment. The application of quantitative structure activity relation-
ship (QSAR) methods to predict human pharmacokinetics is a
growing field, with the potential to reduce research and
development time, costs, and resources. Recent examples include
work by Lombardo et al.9 and Ghafourian and colleagues10 who
used measured and calculated descriptors to predictVss.
However, both investigations relied on relatively small data sets
(∼100) and the requirement for measured data by these models
means that they cannot be applied to virtual compounds.

In our study, models for humanVss were constructed using
purely calculated descriptors for a data set of 199 marketed drugs
covering a range of molecular properties andVssvalues (Figure
1). This was conducted in parallel with model building for rat
Vss based on a data set of 2086 in-house compounds covering
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diverse chemical space andVssvalues (Figure 2). By employing
three distinct but complementary QSAR methodsspartial least
squares (PLS), classification and regression trees (CART), and
Bayesian neural networks (BNN)swe aimed to modelVssusing
solely physicochemical descriptors generated in silico. The use
of three distinctly different statistical methodologies also allows
us to explore more completely the multidimensional molecular
hyperplane that controlsVss as we can explicitly account for
both linear and nonlinear dependencies. We also investigate the
effect of consensus predictions which have often proved more
effective than predictions from individual models alone.

Results and Discussion

To compare the performances of our different QSAR models,
we employ four different statistics:r0

2 is the coefficient of
determination, to the line of unityy ) x; r2 is the square of the
Pearson’s correlation coefficient, based on the line of best fit;
rmse is the root-mean-square error in prediction; ME is the mean
error in prediction. These statistics collectively allow us to
determine the quality of the correlation, either in absolute terms
(ro

2) or in the rank ordering (r2), the model error in the units of
the measurement (rmse), and the presence or absence of any
systematic bias (ME) in prediction.

1. Human QSAR Models. The results of the humanVss

models in fit and prediction are given in Table 2 and Table 3,
respectively. The results in Table 2 show that we are describing
between 64 and 87% of the total variance in the training set
depending on the model; however, whether these statistics are
reproduced in the independent test set cannot be guaranteed.
Analysis of the individual training set fit results would suggest
that the CART and BNN models will predict humanVss more
effectively than PLS on account of their largerr2 and smaller

rmse values. However, we often find the quite rigorous cross-
validation procedures in PLS (leave1/7 of data out 7 times with
reassessment of the model) ensure the model is not overfitted
with respect to the training set, which often leads to similar
performance in training set fit and test set prediction. In contrast,
there can frequently be an increase in rmse in the CART and
BNN models when comparing the training set fit to the test set
predictions. This is clearly shown by comparison of the training
set and test set model rmse values for each modeling approach
in Tables 2 and 3. The BNN and CART models show test set
statistics that deteriorate quite significantly from the training
to test sets with ther2 falling from ∼0.79 to∼0.56. The PLS
model is the most predictive on the test set, explaining 58% of
the total variance, with ther2 from the training to test showing
a more modest decrease (0.64 to 0.58) compared to the CART
or BNN models. The rmse prediction for all three models is
∼0.5 log units, as compared to an experimental error of∼0.2
log units based on an analysis of the replicate measurements.

The predictive ability of the model can be improved further
by taking a consensus of all three predictions. This results in
the total variance of the test set being explained by the model
increasing to 0.60 and the rmse decreasing to 0.48 (Figure 3).
These in silico model results are in accord with models
dependent on measured properties reported by others in the
literature9,10 but are made from an entirely computational
procedure.

2. Rat QSAR Models.The rat training set results given in
Table 4 might again suggest that the CART and BNN models
would predict more effectively than the PLS on account of their
larger r2 values and lower rmse values in fit. Examination of
the results in prediction of the independent test set of 416
compounds (Table 5) does show that the BNN model is the
most predictive of the three followed by the PLS model and

Figure 1. Experimental humanVss distribution (logVss) for 199
compounds by charge type. The charge types are displayed clockwise
from top left: acid (N ) 33, mean) -0.70, standard deviation (SD)
) 0.32), base (N ) 74, mean) 0.62, SD) 0.65), zwitterion (N ) 23,
mean) -0.10, SD) 0.57), and neutral (N ) 69, mean) 0.06, SD
) 0.56).

Figure 2. Experimental ratVss distribution (logVss) for 2086 com-
pounds by charge type. The charge types are displayed clockwise from
top left: acid (N ) 199, mean) -0.29, SD) 0.39), base (N ) 994,
mean) 0.66, SD) 0.43), zwitterion (N ) 130, mean) 0.01, SD)
0.51), and neutral (N ) 763, mean) 0.10, SD) 0.41).
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Table 1. Literature HumanVss Data Set (N )199)a

compd Vss(L/kg) set charge type ref compd Vss(L/kg) set charge type ref

acebutolol 1.2 training base 1 glyburide 0.2 training acid 2
acyclovir 0.69 training neutral 2 granisetron 3 training base 2
alprazolam** 0.72 training neutral 2 hydrochloride
amiloride 17 training base 2 hydralazine 1.5 training neutral 2
amiodarone 66 training base 2 hydrochlorothiazide 0.83 training neutral 2
amitriptyline 15 training base 2 ibuprofen 0.15 training acid 2
amoxicillin 0.21 training zwitterion 2 imipramine 18 training base 2
ampicillin 0.28 training zwitterion 2 indomethacin 0.29 training acid 2
atropine 2 training base 2 isradipine 4 training neutral 2
auranofin** 0.045 training neutral 2 itraconazole 14 training neutral 2
azithromycin 31 training base 2 ketoconazole 0.15 training base 2
bepridil 8 training base 2 ketoprofen 0.15 training acid 2
bisoprolol 3.2 training base 2 ketorolac 0.21 training acid 2
bromocriptine 2 training base 2 lomefloxacin 2.3 training zwitterion 2

mesylate loracarbef 0.32 training zwitterion 2
bupropion 7.2 training base 2 loratidine 120 training neutral 2
caffeine 0.61 training neutral 1 lorazepam 1.3 training neutral 2
captopril 0.81 training acid 2 maprotiline 43 training base 1
carbamazepine 1.4 training neutral 2 mefloquine 19 training base 2
carbenicillin 0.18 training acid 2 meperidine 4.4 training base 2
cefaclor 0.36 training zwitterion 2 methadone 3.8 training base 2
cefprozil 0.22 training zwitterion 2 methyldopa 0.46 training zwitterion 2
cephalexin 0.26 training zwitterion 2 methylprednisolone 1.2 training neutral 2
chlorambucil 0.29 training acid 2 metronidazole 0.74 training neutral 2
chloramphenicol 0.94 training neutral 2 mexiletine 4.9 training base 2
chlorothiazide 0.2 training base 2 minocycline 1.3 training zwitterion 2
chlorpheniramine 3.2 training base 2 morphine sulfate 3.3 training base 2

maleate nabumetone 0.79 training neutral 2
chlorpropamide 0.097 training acid 2 nafcillin sodium 0.35 training acid 2
chlorthalidone 0.1 training neutral 2 naloxone 2.1 training base 2
cimetidine 1 training base 2 naltrexone 19 training base 2
cinoxacin 0.33 training acid 2 hydrochloride
ciprofloxacin 1.8 training zwitterion 2 naproxen sodium 0.16 training acid 2
clarithromycin 2.6 training base 2 nicardipine 1.1 training base 2
clavulanate 0.21 training acid 2 nifedipine 0.78 training neutral 2
clindamycin 1.1 training base 2 nimodipine 1.7 training neutral 2
clofibrate 0.11 training neutral 2 nitrofurantoin 0.58 training neutral 2
clomipramine 20 training base 1 nizatidine 1.2 training base 2
cyclophosphamide 0.78 training neutral 2 norethindrone 3.6 training neutral 2
cyclosporine 1.3 training neutral 2 norfloxacin 0.7 training zwitterion 2
dexamethasone 0.82 training neutral 2 nortriptyline 18 training base 2
diazepam 1.3 training neutral 1 ofloxacin 1.8 training zwitterion 2
diazoxide 0.21 training base 2 omeprazole 0.34 training neutral 2
dicloxacillin 0.086 training acid 2 oxaprozin 0.19 training acid 2
didanosine 1 training neutral 2 oxazepam 0.6 training neutral 2
diflunisal 0.1 training acid 2 paroxetine 0.26 training base 2
digoxin 3.12 training neutral 2 pentazocine 7.1 training base 2
dihydrocodeine 3.1 training base 2 phenobarbital 0.54 training neutral 2
doxazosin 1.5 training neutral 2 phenytoin 0.64 training neutral 2
doxepin 20 training base 2 pimozide 28 training base 2
enalapril 1.7 training zwitterion 2 pindolol 2.3 training base 2
erythromycin 0.78 training base 2 piroxicam 0.15 training neutral 2
ethambutol** 1.6 training base 2 prazepam 14.4 training neutral 2
etodolac 0.36 training acid 2 prazosin 0.6 training neutral 2
famotidine 1.3 training base 2 prednisolone 1.5 training neutral 2
felbamate 0.76 training neutral 2 primidone 0.69 training neutral 2
felodipine 10 training neutral 2 procainamide 1.9 training base 2
finasteride 1.1 training neutral 2 propranolol 4.3 training base 2
fluconazole 0.6 training neutral 2 pyrazinamide 0.7 training neutral 2
flucytosine 0.68 training neutral 2 pyrimethamine 2.3 training neutral 2
fluoxetine 35 training base 2 quinapril 0.4 training zwitterion 2
flurazepam 22 training base 2 quinine sulfate 1.8 training base 2

hydrochloride ranitidine 1.3 training base 2
flurbiprofen 0.15 training acid 2 rifabutin 40 training zwitterion 2
fosinopril sodium 0.13 training acid 2 rifampin 0.97 training zwitterion 2
furosemide 0.11 training acid 2 rimantadine 25 training base 2
ganciclovir 1.1 training neutral 2 hydrochloride**
gemfibrozil 0.14 training acid 2 risperidone 1.1 training base 2
glipizide 0.17 training acid 2 spironolactone 14 training neutral 2
sulfamethoxazole 0.29 training acid 2 diphenhydramine 4.5 test base 2
sulfinpyrazone 0.74 training neutral 2 doxycycline 0.75 test zwitterion 2
sumatriptan succinate 0.65 training base 2 ethinyl estradiol 3.5 test neutral 2
tacrine hydrochloride 5.9 training neutral 2 etoposide 0.36 test neutral 2
tacrolimus 0.88 training neutral 2 famciclovir 0.98 test neutral 2
tamoxifen citrate 55 training base 2 flecainide 4.9 test base 2
temazepam 0.95 training neutral 2 haloperidol 18 test base 2
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the CART model. Ther2 value for the CART test set is larger
compared to that of the PLS; however theirr0

2 and rmse values
are similar indicating they have similar predictive power.

As has been demonstrated with the human derived model,
our ability to predict experimental properties can often be
improved using a consensus of different predictive algorithms.
The differences in rmse between the best consensus model and
the BNN model are smaller than the differences between the
consensus model and the human model, suggesting the benefits
of a consensus prediction in this case are less significant (Table
5 and Figure 4). It should be noted that in both cases the use of
consensus predictions leads either to comparable or to better
predictions than any single model but not to worse.

If we compare the results of the human and rat models solely
using ther2 or r0

2 values, we would wrongly assume the model
built on human data (r2 ∼ 0.6) is more accurate in prediction
than the rat model (r2 ∼ 0.5). On the contrary, examining the

rmse in prediction for the rat generated model, we see that the
value is just∼0.4 log units compared to the human model with
an rmse of∼0.5. This highlights that comparingr2 or r0

2 values
between different models can be misleading. Ther2 and r0

2

values depend on the variance of the data in each set, while the
rmse value is absolute, allowing comparison of performance
across different models and test sets.

Table 1 (Continued)

compd Vss(L/kg) set charge type ref compd Vss(L/kg) set charge type ref

terbutaline sulfate 1.8 training base 2 isosorbide dinitrate 3.9 test neutral 2
tocainide 3 training base 2 labetalol 9.4 test zwitterion 2
tolmetin sodium 0.54 training acid 2 levonorgestrel 1.7 test neutral 2
trazodone 1 training base 2 lincomycin 1.3 test base 2
triamterene 13.4 training neutral 2 melphalan 0.45 test zwitterion 2
triazolam** 1.1 training neutral 2 mercaptopurine 0.56 test neutral 2
venlafaxine 7.5 training base 2 methotrexate 0.55 test acid 2

hydrochloride sodium
verapamil 5 training base 2 metoclopramide 3.4 test base 2
zidovudine 1.4 training neutral 2 metoprolol 4.2 test base 2
zolpidem tartrate 0.54 training neutral 2 misoprostol 14 test neutral 2
amlodipine besylate 16 test base 2 ondansetron 1.9 test base 2
amphotericin b 0.76 test zwitterion 2 pravastatin 0.04 test acid 2
atenolol 0.95 test base 2 prednisone 0.97 test neutral 2
benazepril 0.12 test zwitterion 2 propafenone 3.6 test base 2
bumetanide 0.13 test acid 2 quinidine gluconate 2.7 test base 2
cefpodoxime proxetil 0.46 test neutral 2 sertraline 76 test base 2
cephradine 0.46 test zwitterion 2 sulfisoxazole 0.15 test acid 2
chlordiazepoxide 0.3 test base 2 sulindac 2 test acid 2
chloroquine 115 test base 2 tetracycline 1.5 test zwitterion 2
chlorpromazine 21 test base 2 theophylline 0.5 test neutral 2
clonazepam 3.2 test neutral 2 timolol 2.1 test base 2
cloxacillin 0.094 test acid 2 tolbutamide 0.1 test acid 2
clozapine 5.4 test base 2 trimethoprim 1.6 test base 2
dapsone 1 test neutral 2 valproic acid 0.22 test acid 2
desipramine 20 test base 2 warfarin sodium 0.14 test neutral 2
diclofenac 0.17 test acid 2 zalcitabine 0.53 test neutral 2
digitoxin 0.54 test neutral 2

a Ref 1: J. Med. Chem.2004 47, 1242-1250; ref 2: The Pharmacological Basis of Therapeutics, 9th Ed.; Goodman & Gilman: 1996. **Indicates
molecule excluded from model building due to descriptor failures.

Table 2. HumanVss Training Set Statistics of the BNN, CART, and
PLS Modelsa

model r0
2 r2 (q2) rmse ME

PLS 0.641 0.641 (0.597) 0.422 0.000
CART 0.871 0.876 0.253 0.016
BNN 0.790 0.794 0.323 0.018

a N ) 144, standard deviation (SD)yobs) 0.71, meanyobs) 0.124. The
r0

2 is the coefficient of determination (correlation to line of unity),r2/q2 is
the correlation to the line of best fit/cross validatedr2, rmse is the root
mean square error, and ME is the mean error.

Table 3. HumanVss Test Set Statistics for the BNN, CART, and PLS
Modelsa

model r0
2 r2 rmse ME

PLS 0.577 0.587 0.494 0.032
CART 0.570 0.573 0.498 -0.028
BNN 0.550 0.560 0.509 0.075
CART-BNN-PLS 0.602 0.612 0.479 0.028

a N ) 50, SDyobs) 0.77, meanyobs) 0.133. Also shown is the consensus
prediction calculated as the average of the three individual model predictions.

Figure 3. Plot of observed human log(Vss (L/kg)) versus the in silico
consensus prediction (CART-BNN-PLS) (N ) 50). The regression line
is colored red, with the 95% confidence limits given in green. The
blue lines are the 95% confidence limits for the predictions. The
regression line slope is 1.13, and the intercept is-0.02.

Table 4. Rat Vss Training Set Statistics of the BNN, CART, and PLS
Modelsa

model r0
2 r2 (q2) rmse ME

PLS 0.519 0.519 (0.506) 0.375 -0.001
CART 0.854 0.846 0.218 -0.01
BNN 0.767 0.767 0.261 -0.016

a N ) 1670, SDyobs ) 0.541, meanyobs ) 0.326.
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3. Vss Prediction from Charge State Alone. In the early
stages of a project it is often assumed that theVssof a particular
compound will lie within certain ranges based solely on charge
state at pH 7.4 (Table 6). Acids for example are expected to lie
within a relatively narrowVssrange of between 0.1 and 0.3 L/kg
in contrast to bases, which are initially assumed to have steady-
state volumes greater than 3 L/kg. To ascertain whether a simple
Vss classification based on charge type alone was any better
than either the in silico rat model or human model, we calculated
the rmse in prediction using the mean value from the “expected
ranges” as the best guess for the whole test set and each charge
type individually (Table 7 and Table 8). We wished to assess
whether our in silico models were an improvement on an in
cerebro model, on the basis of an ADMET scientist’s best
estimate for volume of distribution of acids, neutrals, bases, and
zwitterions as our prediction for each charge type. One could
suggest that this is a truer test of predictive ability of a QSAR
model than any other validation exercise.

3.1. Human Model.Analysis of the in silico model results
for the test set in terms of ionization classes (Table 7) shows
that zwitterions are predicted with the smallest error (0.43),
followed by neutral (0.48) and basic compounds (0.48), with
acids predicted with the largest error (0.50). Using the mean of
the expected experimentalVss ranges for the different charged
species as the estimate ofVss, we find that the rmse in prediction

for the test set is 0.57 compared to 0.48 for the in silico model
indicating the benefits of the in silico model.

When the analysis is done in terms of the individual charge
types, we find that in all but one case the in silico model does
better than that based solely on ionization state. The simplistic
charge method predicts the seven zwitterions with an rmse of
0.38 compared to 0.43 for the in silico model. This may be a
chance effect due to the small number of observations.

We also calculated the percentage of observations that lie
within the expectedVss ranges in a further effort to quantify
the accuracy of the ranges. When we analyze the number of
observations that fall within the expectedVss ranges, we find
that in the worst class, only 32% of bases fall within the
expected ranges, while in the best predicted class, 47% of
neutrals are correctly classified at best. This suggests the rather
tight distributions expected for the different ionization states
are unrealistic, and the model is doing significantly better than
a scientist’s intuitive guess (in cerebro prediction) just on the
basis of charge-type.

3.2. Rat Model. Analysis of the in silico model results for
the test set in terms of ionization classes (Table 8) shows a
different trend to that observed from the human-based volume
model. Acids are predicted with the smallest error (0.34),
followed by neutral (0.36) and zwitterionic compounds (0.38),
with bases predicted with the largest error (0.39). Using the
mean of the expected experimentalVss ranges for the different
charged species as the estimate ofVss, we find that the rmse in
prediction for the test set is 0.48 compared to 0.37 for the in
silico model indicating the benefits of the in silico method.
Furthermore, when the analysis is done in terms of the individual
ionization states, we find that in all cases the in silico model
does better than that based solely on the mean value assumed
for each charge type. When we analyze the number of obser-
vations that fall within the expectedVssranges for the particular
ionization types, we find that at worst only 31% of acids fall
within the ranges to 72% of bases at best.

4. Model Performance by Project. Project codes were
extracted along with the in-house rat volume data to allow us
to monitor the performance of the model for individual project

Table 5. Rat Vss Test Set Statistics for the BNN, CART, and PLS
Modelsa

model r0
2 r2 rmse ME

PLS 0.458 0.463 0.404 -0.037
CART 0.457 0.470 0.404 -0.027
BNN 0.519 0.527 0.380 -0.029
CART-BNN-PLS 0.534 0.538 0.374 -0.033

a N ) 416, SDyobs ) 0.549, meanyobs ) 0.313. Also shown is the
consensus prediction involving the average of all three models.

Figure 4. Plot of observed rat log(Vss (L/kg)) versus the in silico
consensus prediction (CART-BNN-PLS) (N ) 416). The regression
line is colored red, with the 95% confidence limits given in green. The
blue lines are the 95% confidence limits for the predictions. Regression
line slope is 1.03, and the intercept is-0.04.

Table 6. Vss Ranges Often Assumed for Different Charge Types

log(Vss(L/kg))

charge type min mean max

acids (Vss: 0.1-0.3 L/kg) -1.00 -0.76 -0.52
bases (Vss: >3 to >15 L/kg) 0.48 0.85 1.18
neutrals (Vss: 0.5-2 L/kg) -0.30 0.00 0.30
zwitterions (Vss: 0.5-2 L/kg) -0.30 0.00 0.30

Table 7. Human in Silico rmse and the rmse from a Prediction Based
on Charge Type Only Are Reported for the Test Seta

humanVss

predictions acid base neutral zwitterion

N 9 19 15 7
in silico rmse 0.498 0.484 0.484 0.434
rmse (charge based

prediction)
0.521 0.633 0.490 0.379

% of observations
found in ranges

44 32 47 43

a The latter prediction is taken as the mean of the expectedVss ranges as
given in Table 6. Also shown are the percentages of observations that fall
within the expectedVss ranges for each charge class.

Table 8. Rat in Silico rmse and the rmse from a Prediction Based on
Charge Type Only Are Reported for the Test Seta

ratVss

predictions acid base neutral zwitterion

N 30 190 170 26
in silico rmse 0.344 0.392 0.359 0.375
rmse (charge based

prediction)
0.505 0.499 0.437 0.565

% of observations
found in ranges

31 72 59 42

a The latter prediction is taken as the mean of the expectedVss ranges as
given in Table 6. Also shown are the percentages of observations that fall
within the expectedVss ranges for each charge class.
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series. This is an important factor to consider as a global model
often performs considerably better on some individual projects,
and worse on others, as the overall test set statistics are averaged
across all compounds and all project series. This can be both
in absolute prediction and in terms of the rank order. We
therefore computed the rmse in prediction of the test set
compounds where a particular project had greater than 10
observations in the test set. We also report the mean experi-
mental log(Vss) observed for the project series, the mean
predicted value from the in silico rat model, and the prediction
based on the charge type only (Table 9).

We find projects C, J, and I all have rmses in prediction less
than 0.26 log unit, which is considerably less than the global
rat consensus model error would suggest at 0.37 log unit. In
contrast, projects G and H have rmses larger than the global
model error, suggesting it is desirable, where possible, to validate
the QSAR model for a particular project series before using
the in silico model in a project environment. In terms of
predictions from ionization state alone, we find that apart from
project A where the respective rmses are 0.36 and 0.35 log units,
all projects are better predicted by the in silico model.

It is important to note that project compounds that are well
represented in the test set (i.e.,N > 10) will also be well
represented in the training set due to the random training/test
set selection, so the improved model performance must also be
due in part to their better representation in the derived model.
However, for projects whereN < 10, we find many projects
do better than the global model error, suggesting the model is
not simply project specific.

5. Descriptors Controlling Steady-State Volume. 5.1.
Human Model. There is a strong overlap between the types of
descriptors identified using the three different statistical meth-
odologies: BNN, CART, and PLS. To simplify matters, we only
report the more easily interpretable PLS descriptors in the form
of the scores (Figure 5), weights plot (Figure 6), and the overall
normalized/scaled coefficients (Figure 7). The first component
in the human model describes 51% of the variance in the training
set and the second 13%. Component 1 essentially describes the
lipophilicity/molecular weight dependency ofVss, and the sec-
ond component describes the charge state or charge distribu-
tion. Basic moieties/large positive charge and lipophilicity based
descriptors have positive coefficients. This means that com-
pounds with these features are expected to have higher volumes.
In contrast, acidic/negative charge based descriptors have
negative coefficients that generally lead to a decrease in volume.
It must be noted that some descriptors are indicator variables
(i.e., NEGCHARGED) while others have absolute negative

values (i.e., average negative charge using Gasteiger-Huckel
partial charge equilibration, Aver_Neg_Charge_G_H), so even
though they are found to have different coefficient signs, they
are actually having the same effect on theVss. Similarly, posi-
tive charge indicator variables have positive coefficients
while the variance in positive charge over the van der Waals
(VDW) surface area and the most positively charged atom in
the molecule are negatively correlated withVss. The most
positively charged atom in the molecule (MM_MAXPOS)
correlates with the extent of delocalization (MM_VDW_
EP_P_VAR), suggesting basic molecules may have varyingVss

driven by the extent of delocalization of the charge over the
molecular surface.

5.2. Rat Model.In accord with the humanVssmodel we find
that the same descriptors are present in all three QSPR models
and that charge type and lipophilicity dominate. We again focus
on the PLS descriptors rather than the CART or BNN examples
as these are more easily interpretable. Component 1 (45% of
the explained variance) of the PLS model relates to lipophility/
molecular weight, the second component (5% of the explained
variance) to charge state/charge distribution, and the third
component (2% of variance) to descriptors related to aromatic
molecular features (Figure 8).

We find basic/positive charge and lipophilicity based descrip-
tors have a positive coefficient which means compounds with
these features are expected to have higher volumes. In contrast,
acidic/negative charge descriptors have negative coefficients so
generally lead to a decrease in volume. It must be noted that
some descriptors are indicator variables (i.e., NEGCHARGED)
and others have absolute negative values (i.e., average negative
charge using Gasteiger-Marsili partial charge equilibration,
Aver_Neg_Charge_Gast), so while they are found to have
different coefficient signs, they are actually having the same
effect on the volume.

6. Relationship between Human and Rat in Silico Models.
A fundamental assumption in pharmacokinetics is that the
unbound volume of distribution across species is constant.
Therefore, volume of distribution differences across species
are likely to be due to species differences in protein binding.
The human and rat models were developed using different data
sets compiled from two separate species, so the overlap be-
tween the models is an important aspect to consider, especially
as the descriptors employed in both are so similar. On the
basis of the analysis of 548 in house compounds with pro-
tein binding measurements in both species, it can be shown
that while binding to plasma in both species is highly corre-
lated (r2 ) 0.78), human protein binding is generally higher
than in rat (Figure 9, Table 10), so in principle one could ex-
pect a systematic difference in the predictions from the two
methods.

Predicting the rat test set of 416 compounds using the human
model and vice versa shows the rat model predicts the human
test set as well as the human model, both with an rmse of∼0.50
(Figures 10 and 11). However, the human model only predicts
the rat test set with an rmse of∼0.50 compared to an rmse of
∼0.38 from the rat model itself. The same result is obtained
when either model is used to predict the other combined training/
test set. Interestingly, the rat model predicts the human test set
with no bias (low mean error), suggesting that the small protein
binding differences between rat and human that may contribute
to systematic bias in predictedVss are not identified by the
model. To understand why the rat model predicts the human
test set as well as the human model itself, we used 21 key
descriptors, commonly used at AstraZeneca for comparative

Table 9. Performance of the in Silico RatVss Model by Projecta

mean log(Vss(L/kg)) rmse

project N expt

charge
based

prediction
in silico

prediction

prediction
based on

charge type
in silico

prediction

A 60 0.38 0.19 0.22 0.35 0.36
B 50 0.55 0.42 0.41 0.46 0.38
C 40 0.31 0.11 0.14 0.34 0.26
D 37 0.36 0.14 0.16 0.43 0.33
E 28 0.48 0.37 0.28 0.57 0.37
F 27 0.40 0.31 0.28 0.40 0.37
G 22 0.43 0.30 0.31 0.43 0.39
H 19 0.49 0.32 0.31 0.65 0.47
I 13 0.50 0.43 0.35 0.39 0.24
J 10 0.30 0.49 0.24 0.52 0.26

a The in silico model is also compared to a prediction based on charge
type alone. Only projects where more than 10 observations are present are
shown.
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analysis, to assess the similarity between the two data sets. A
PCA model fitting just two components describes 61% of the
variance in the combined data set and clearly illustrates the
differences between the data sets. From the PCA scores plot
(Figure 12) it can be seen that while the majority of human
compounds have rat near-neighbors, the converse is not true;
there are many ratVss compounds that do not have humanVss

near-neighbors. This may explain why the rat model predicts
the human results as well as the human model but not vice versa.
Analysis of the PCA scores and loadings plots (Figures 12 and
13) shows that this difference is simply a reflection of the
lower logD, log P, molecular weight (mol wt), calculated molar
refractivity (CMR), and so forth of the literature derived
compounds.

Conclusions

The humanVss model explains∼50% of the variance of the
test set of 50 compounds and has an error in prediction of∼0.47
log unit. The ratVss consensus model explains∼50% of the
variance of the test set of 416 compounds and has an error in
prediction of∼0.37 log unit. Both models perform better than
a prediction ofVss based solely on charge type and therefore
could be utilized to estimateVss in either species in the early
stages of a project.

The results herein suggest great care should be taken when
using QSAR models developed on literature data of marketed
drugs in the drug discovery process as these compounds are
not generally representative of compounds commonly found in
drug discovery research.

This is the first reported design and application of entirely
in silico models for the prediction of an in vivo pharmacokinetic
parameter. This approach demonstrates the potential of QSAR
techniques, together with suitable high-quality data sets, to
produce predictive ADME models, which may prove useful in
the early stages of drug discovery prior to resource-intensive
chemical synthesis and data acquisition.

Experimental Section

Computational Details. For this study PLS analyses were
conducted using SIMCA 8.011 and GOLPE12 and regression trees
built using CART 4.0.13 The CART methodology employs binary
recursive partitioning, and in this model a consensus of 15
regression trees was found to be optimal when combined using
bootstrapping aggregation (Bagging). The Gini algorithm together
with least absolute deviation regression was used throughout this
work. No misclassification costs were used in this analysis, and
priors were set as equal. BNN models are less susceptible to
overtraining and overfitting compared to classical neural networks.14

Several publications have used BNN techniques for building QSAR

Figure 5. Human model PLS scores plot for the three-component PLS model. Only components 1 and 2 are shown as these account for the
majority of the variance explained.

Figure 6. Human model PLS weights plot. Component 1 essentially encodes lipophilicity/molecular weight/size, and component 2 encodes charge type/
hydrogen-bonding potential.
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models, and these techniques have been especially successful when
applied to ADMET modeling.15-18 For example, Sorich et al. have
shown the BNN approach to produce superior models as compared
to linear techniques when applied to the mapping of phase II
metabolism.18 A BNN model was produced using scripts in Perl
language written by P. Bruneau,19 coupled with an automated
routine for variable selection written by R. Neal.20 Prior to feeding
the data into the BNN, both the descriptor vectors and the dependent
variable were scaled to give a mean equal to 0 and a standard
deviation equal to 1. The protocol followed to give a BNN model
has been described by Bruneau.19 This paper should be consulted
for a full discussion on training parameters.

Intravenous Rat Pharmacokinetic Studies.All animal stu-
dies were conducted under U.K. Home Office License according
to appropriate national legislation. Male rats (Sprague-Dawley;

150-250 g) were supplied by Charles River Ltd. (Margate, U.K.).
Rats were given free access to food and water. Single dose (typically
1 mg/kg) plasma pharmacokinetics of AstraZeneca R&D Charn-
wood Discovery compounds were studied in rats after injection
through the tail vein. Typically, blood samples (∼300 µL) were
taken from the tail vein (reverse side to iv administration) at 2, 4,
8, 15, 30, 60, 120, 180, 300, 420, and 720 min postdose. Blood
was collected in EDTA tubes, and plasma was removed following
centrifugation (5 min, 4°C, 3000 rpm). Plasma samples were
analyzed by LC-MS/MS in MRM mode. Standard calibration
curves were constructed by analyzing a series of control rat plasma
aliquots containing suitable internal standard and various concentra-
tions (1-40000 ng/mL) of test compound. The concentration of
compound in each unknown sample was determined by solving
the linear calibration curve equation for each corresponding drug/

Figure 7. Coefficients derived from the descriptor PLS humanVssmodel. (r2 ) 0.64,q2 ) 0.60, comp) 2). A broad classification of the descriptors
is used above; red descriptors are acid/negative charge descriptors/indicators, blue descriptors are base/positive charge descriptors/indicators, black
are lipophilicity/size based descriptors, gray are size/aromaticity based descriptors, and yellow are others.

Figure 8. Coefficients derived from the descriptor ratVss PLS model (r2 ) 0.52,q2 ) 0.51, comp) 3). Red descriptors are acid/negative charge
descriptors/indicators, blue descriptors are base/positive charge descriptors/indicators, black are lipophilicity/size based descriptors, gray are size/
aromaticity based descriptors, and yellow are others.
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internal standard ratio. Data manipulations and statistical calcula-
tions (mean( SD) were performed in Excel software (Microsoft,
WA). Plasma concentration versus time plots were analyzed using
commercial software WinNonLin 3.1 (Pharsight, Mountain View,
CA) to determine clearance, steady-state volume of distribution,
and half-life.

Database Compilation.A total of 199 compounds of the human
Vss data set were obtained from two different literature sources9,21

(Table 1). The compounds were coded as SMILES strings, and
123 descriptors, which broadly describe lipophilicity, size, topologi-
cal, geometrical, and electronic features of molecules, were
calculated using an AstraZeneca (AZ) molecular descriptor genera-
tor that has been described elsewhere.22 Observations that reported
errors on the key molecular descriptors such as ACDlogD7.4 were

removed as BNN and CART require complete matrices with no
missing values. Furthermore, since we wished to compare the
performance of the individual models against those of a consensus
prediction, identical training and prediction sets were required. A
data set of>2000 ratVss measurements was extracted from the
internal databases at AstraZeneca R&D Charnwood. Compounds
with nonquantitativeVssmeasurements were excluded as we wished
to build a continuous model, leaving 2086 compounds in total.
Molecular descriptors were calculated and filtered using the same
criteria used for the human data set.

The two data sets were randomly partitioned into training and
test sets, 75%/25% for the human data and 80%/20% for rat. The
Vss values were logged to normalize the distribution of the errors
across theVssrange. The log(Vss(L/kg)) distributions for the human
and rat data sets are displayed in graphical form (Figures 1 and 2)
for the four charge types: acid, base, neutral, and zwitterion.

QSAR Models.Human and rat PLS models were built and tested
in SIMCA 8.0. Variable reduction was performed externally in the
PLS software GOLPE by use of one round ofD-optimal design
(20% of variables removed on the basis of their coefficients)
followed by fractional factorial selection, to find the key variables.
Further variable removal was undertaken in SIMCA on the basis
of an evaluation of the magnitude, the signs of the coefficients,
and whether they agreed with chemical intuition. This led to a
reduced-descriptor human model consisting of 2 components and
23 descriptors and a rat model with 3 components and 21
descriptors. The resulting models were the most significant PLS
models in fit of the training set and the prediction of the test set.

To determine if the model could have occurred by chance,
we performed randomization trials of the data matrix within
SIMCA-P. The randomization tests were performed 500 times on
the initial observedy-data, and the models were rebuilt. No
randomized case approached the performance of our model in terms
of r2 or q2 implying that our PLS models could not have occurred
by chance.

Initial human and rat CART models were built using all the
available descriptors and a consensus of 10 trees without pruning.
The resulting models were assessed in fit and prediction of the
training and test sets and subsequently refined in two ways: (a)
using the average variable importance (VIP) of a descriptor from
all the trees used in the consensus prediction and (b) using the
optimal PLS descriptors. The CART VIP is a relative scale in which
variables that are involved in primary splits have greater importance
than those used further down the tree. We often find removal of
variables with low importance can increase the predictivity of
models. The optimal GOLPE derived descriptors can also be used

Figure 9. Plot of the observed human PPB against the experimental
rat PPB for 548 compounds with measurements in both species. The
line of unity is represented by the black line, with the line of best fit
shown in red: rmse) 0.42 and ME) -0.19.

Table 10. Two Tailed t Test of Human and Rat Plasma Protein Binding
(PPB) logK Measurementsa

t test human rat

mean 0.558 0.527
variance 0.670 0.581
observations 548
hypothesized mean difference 0.0
P 9.16× 10-5

a PPB results are generally higher in humans than in rat. Probability that
they are significantly different is greater than the commonly used 99%
confidence level.

Figure 10. HumanVss model predicting the ratVss test set (N ) 416):
r2 ) 0.27, r0

2 ) 0.11, rmse) 0.52, ME ) -0.18, slope) 0.69,
intercept) 0.22. Prediction of the total rat data set (N ) 2086) gives
r2 ) 0.29,r0

2 ) 0.07, rmse) 0.52, ME) -0.22, slope) 0.72, and
intercept) 0.25.

Figure 11. RatVss model predicting the humanVss test set (N ) 50):
r2 ) 0.61, r0

2 ) 0.58, rmse) 0.49, ME ) -0.01, slope) 1.30,
intercept) -0.06. Prediction of the total human data set (N ) 194)
givesr2 ) 0.53,r0

2 ) 0.51, rmse) 0.50, ME) -0.01, slope) 1.23,
and intercept) -0.04.
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as input for CART as these relate molecular structure to the response
in a linear fashion. It is arguable whether using descriptors selected
by a linear method is an acceptable input to a subsequent nonlinear
modeling method. However, this is often applied pragmatically as
a rapid variable reduction procedure, for instance, selecting variables
by clustering or pairwise intercorrelation. Moreover, many nonlinear
relationships can be approximated to some extent by a combination
of linear models. Using the PLS descriptors as input for nonlinear
methods often proves advantageous as a linear relationship is not
imposed.

The optimal human model was obtained using the 30 descriptors
with the highest VIP and a consensus of 10 separate trees. The
optimal rat model obtained used the GOLPE derived descriptors
(34) and a consensus of 10 separate trees.

Neural networks are computationally intensive methods that
relate molecular characteristics to a response in either a linear or
nonlinear fashion. The advantage of the Bayesian implementation
of neutral nets above standard feed forward types is that a large
number of networks are built using a distribution of starting weights
and bias terms which are constantly updated during the modeling
process. As the key descriptors and cross-terms are identified, the
information is maintained within the model building process through
the update of the starting distributions for the following cycle.

Variable reduction is achieved using automatic relevance determi-
nation (ARD), which operates by removing descriptors whose
weights contribute only a fraction of that compared to the most
important example. A detailed description of the BNN implementa-
tion used at AZ is given elsewhere.19,22

The final models consist of a consensus of the last 200 cycles
(models) of the training phase with the human model using 14
descriptors and the rat using 10 descriptors.
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